Upregulation of nitric oxide synthase in mice with severe hypoxia-induced pulmonary hypertension

نویسندگان

  • Karen A Fagan
  • Brian Morrissey
  • Brian W Fouty
  • Koichi Sato
  • Julie Wright Harral
  • Kenneth G Morris
  • Marloes Hoedt-Miller
  • Shanda Vidmar
  • Ivan F McMurtry
  • David M Rodman
چکیده

BACKGROUND The importance of nitric oxide (NO) in hypoxic pulmonary hypertension has been demonstrated using nitric oxide synthase (NOS) knockout mice. In that model NO from endothelial NOS (eNOS) plays a central role in modulating pulmonary vascular tone and attenuating hypoxic pulmonary hypertension. However, the normal regulation of NOS expression in mice following hypoxia is uncertain. Because genetically engineered mice are often utilized in studies of NO, we conducted the present study to determine how hypoxia alters NOS expression in wild-type mice. METHOD Mice were exposed to sea level, ambient conditions (5280 feet) or severe altitude (17,000 feet) for 6 weeks from birth, and hemodynamics and lung NOS expression were assessed. RESULTS Hypoxic mice developed severe pulmonary hypertension (right ventricular systolic pressure [RVsP] 60 mmHg) as compared with normoxic mice (27 mmHg). Using quantitative reverse-transcription PCR, it was found that expressions of eNOS and inducible NOS (iNOS) increased 1.5-fold and 3.5-fold, respectively, in the lung. In addition, the level of lung eNOS protein was increased, neuronal NOS (nNOS) protein was unchanged, and iNOS was below the limit of detection. Immunohistochemistry demonstrated no change in lung iNOS or nNOS staining in either central or peripheral areas, but suggested increased eNOS in the periphery following hypoxia. CONCLUSION In mice, hypoxia is associated with increases in lung eNOS, possibly in iNOS, but not in nNOS; this suggests that the pattern of lung NOS expression following hypoxia must be considered in studies using genetically engineered mice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Increased susceptibility to hypoxic pulmonary hypertension in Bmpr2 mutant mice is associated with endothelial dysfunction in the pulmonary vasculature.

Patients with familial pulmonary arterial hypertension inherit heterozygous mutations of the type 2 bone morphogenetic protein (BMP) receptor BMPR2. To explore the cellular mechanisms of this disease, we evaluated the pulmonary vascular responses to chronic hypoxia in mice carrying heterozygous hypomorphic Bmpr2 mutations (Bmpr2 delta Ex2/+). These mice develop more severe pulmonary hypertensio...

متن کامل

Pivotal role for endothelial tetrahydrobiopterin in pulmonary hypertension.

BACKGROUND Pulmonary hypertension is a fatal disease characterized by vasoconstriction and vascular remodeling. Loss of endothelial nitric oxide bioavailability is implicated in pulmonary hypertension pathogenesis. Recent evidence suggests that the cofactor tetrahydrobiopterin (BH4) is an important regulator of nitric oxide synthase enzymatic function. METHODS AND RESULTS In the hph-1 mouse w...

متن کامل

Activation of soluble guanylate cyclase reverses experimental pulmonary hypertension and vascular remodeling.

BACKGROUND Severe pulmonary hypertension is a disabling disease with high mortality, characterized by pulmonary vascular remodeling and right heart hypertrophy. Using wild-type and homozygous endothelial nitric oxide synthase (NOS3(-/-)) knockout mice with pulmonary hypertension induced by chronic hypoxia and rats with monocrotaline-induced pulmonary hypertension, we examined whether the solubl...

متن کامل

Bmp2 and Bmp4 exert opposing effects in hypoxic pulmonary hypertension.

The bone morphogenetic protein (BMP) type 2 receptor ligand, Bmp2, is upregulated in the peripheral pulmonary vasculature during hypoxia-induced pulmonary hypertension (PH). This contrasts with the expression of Bmp4, which is expressed in respiratory epithelia throughout the lung. Unlike heterozygous null Bmp4 mice (Bmp4(LacZ/+)), which are protected from the development of hypoxic PH, mice th...

متن کامل

Contribution of Nitric Oxide Synthase (NOS) Activity in Blood-Brain Barrier Disruption and Edema after Acute Ischemia/ Reperfusion in Aortic Coarctation-Induced Hypertensive Rats

Background: Nitric oxide synthase (NOS) activity is increased during hypertension and cerebral ischemia. NOS inactivation reduces stroke-induced cerebral injuries, but little is known about its role in blood-brain barrier (BBB) disruption and cerebral edema formation during stroke in acute hypertension. Here, we investigated the role of NOS inhibition in progression of edema formation and BBB d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Respiratory Research

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2001